
MP2I - 2025/2026 Informatique – TP n°12 – Tableaux redimensionnables 1/3

TP n°12 – Tableaux redimensionnables
d’après un TP de Nicolas Pécheux

1 Tableaux redimensionnables
Dans ce TP on veut implémenter une version d’un tableau redimensionnable dans le style des "listes" Python.
Contrairement à la version vue en cours, on ne peut pas redimensionner le tableau à la taille désirée, mais on peut
ajouter (append) un élément à droite du tableau, en affectant plus de place si on en manque.
On nommera le type correspondant 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦. Ce type doit avoir les primitives suivantes, on note 𝑒𝑙𝑡 le type contenu
dans notre tableau redimensionnable :

■ Création d’un tableau vide avec create : 𝑣𝑜𝑖𝑑 → 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦

■ Accès à l’élément d’indice 𝑖 avec get : 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 × 𝑖𝑛𝑡 → 𝑒𝑙𝑡

■ Modification de l’élément d’indice 𝑖 avec set : 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 × 𝑖𝑛𝑡 × 𝑒𝑙𝑡 → 𝑣𝑜𝑖𝑑

■ Ajout d’un élément à la fin du tableau avec push : 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 × 𝑒𝑙𝑡 → 𝑣𝑜𝑖𝑑

■ Récupération et suppression de l’élément le plus à droite avec pop : 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 → 𝑒𝑙𝑡

■ Compter le nombre d’éléments présents avec length : 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 → 𝑖𝑛𝑡

■ Supprimer la structure de données en mémoire avec delete : 𝑟𝑒𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 → 𝑣𝑜𝑖𝑑

2 Réalisation naïve en C
En C on ne sait pas créer des types polymorphes. On créera donc un tableau redimensionable d’entiers.
On considère la structure suivante :

struct resizearray {
int capacity;
int len;
int* data;
};

typedef struct resizearray resizearray;

• L’entier capacity représente la capacité du tableau, c’est-à-dire la taille du bloc vers lequel pointe data.
• L’entier len représente le nombre de cases du tableau utilisées pour stocker des valeurs.
• Les éléments sont stockés à partir du début du bloc : il peut y avoir de la place libre à la fin du bloc (si capacity >
len). Dans ce cas, les valeurs présentes dans les cases « libres » n’ont aucun sens.

data

capacity 6

len 4

17 2 7 1 ? ?

Exemple - Un resizearray de capacité 6 contenant 4 éléments.
Les fonctions get et set fonctionnent exactement comme pour un tableau. Pour gérer pop et push, on peut imaginer
procéder ainsi :

■ un pop fait diminuer len de 1, et ne change pas capacity (il y a une erreur si len vaut zéro) ;
■ pour un push, il y a deux cas :

■ si len < capacity, on écrit le nouvel élément dans la première case libre et on incrémente len ;
■ si len == capacity, on alloue un nouveau bloc de mémoire data, de taille capacity + 1, on recopie le

contenu de l’ancien champ data et on ajoute la nouvelle valeur dans la case vide.

■ Q1. Dessiner le tableau redimensionnable de taille 3 et de capacité 3 contenant 2, 12, 5, dans cet ordre. Dessiner
son état après une opération pop. Dessiner son état lorsqu’on ajoute 4, puis son état si on ajoute 6.

■ Q2. Écrire la fonction int length(resizearray* t) qui donne la longueur du tableau redimensionnable.
■ Q3. Écrire la fonction resizearray* create(void) renvoyant un pointeur vers un tableau redimensionnable vide.

On initialisera data à NULL et capacity à 0.
■ Q4. Écrire les fonctions get et set. N’oubliez pas la programmation défensive (des assert). Leur signature sera :

int get(resizearray* t, int i);
void set(resizearray* t, int i, int x);

■ Q5. Écrire la fonction int pop(resizearray* t).



MP2I - 2025/2026 Informatique – TP n°12 – Tableaux redimensionnables 2/3

■ Q6. Écrire une fonction void resize(resizearray* t, int new_capacity) qui alloue un nouveau tableau, co-
pie le contenu de l’ancien tableau dans le nouveau et met à jour les champs de t. On pensera à libé-
rer l’ancien tableau. La fonction resize est une fonction outil qui peut être réutilisée dans la partie

3. Il ne s’agit pas d’une primitive.
■ Q7. Écrire la fonction void push(resizearray* t, int x) en utilisant resize.
■ Q8. Écrire une fonction void delete(resizearray* t) qui détruit le tableau redimensionnable pointé par t en li-

bérant tout l’espace occupé par celui-ci.

3 Réalisation efficace en C
Avec l’implémentation précédente, la complexité de chaque push est en grand O du champ capacity (on réalloue à chaque
fois un bloc car on a pas assez de place), sauf si on a précédemment utilisé pop. Sachant qu’on part d’une capacité nulle,
pour avoir un tableau assez grand pour une utilisation lambda (écrire un algorithme de tri, ...) on va avoir beaucoup
de créations de tableaux et donc de complexité.
Il n’est pas vraiment possible d’obtenir une complexité constante dans le pire des cas pour les fonctions push et pop,
mais on peut obtenir une complexité amortie en 𝑂(1) pour push en utilisant la stratégie suivante :

■ s’il reste de la place libre, on ajoute l’élément dans le tableau (comme pour la solution naïve) ;
■ sinon, on procède aussi comme pour la solution naïve, sauf que le nouveau bloc alloué est de taille 2 * capacity

et pas capacity+1. Attention au cas capacity==0.

■ Q9. Apporter les modifications nécessaires à la fonction fonction push pour utiliser la nouvelle stratégie.
■ Q10. Quelles sont les complexités des opérations pop, get et set ?
■ Q11. Si t est un tableau redimensionable de longueur 𝑛, quelle est la complexité d’un push dans le pire cas et dans

le meilleur cas?
■ Q12. On considère une série de 𝑛 opérations push ou pop sur un tableau initialement vide. Il n’y a aucune contrainte

sur les opérations effectuées (sauf qu’on ne fait pas de pop sur un tableau vide) : on peut avoir 𝑛 push, ou 𝑛/2
push suivis de 𝑛/2 pop, ou une alternance de push et de pop, etc. Montrer que le coût total de cette série de 𝑛

opérations est en 𝑂(𝑛).
Comme une série de 𝑛 opérations (sur un tableau initialement vide) a un coût total en 𝑂(𝑛), on dira que la
complexité amortie d’une opération push est en 𝑂(1).

Cette complexité amortie est satisfaisante, mais notre stratégie a un gros défaut : la mémoire utilisée peut-être arbi-
trairement plus grande que celle nécessaire pour stocker le nombre actuel d’éléments. En effet, la taille du bloc alloué
ne diminue jamais lors d’une opération pop, et l’on peut donc avoir un tableau "vide" occupant une place proportionnelle
au nombre maximum d’éléments qu’il a contenus par le passé.
On propose la stratégie suivante :

■ si len devient strictement inférieure à capacity / 2 après un pop, on ré-alloue le bloc de données en lui donnant
une taille capacity / 2 ;

■ sinon, on procède comme avant.

■ Q13. Apporter les modifications nécessaires à la fonction pop.
■ Q14. Montrer qu’une série de 𝑛 opérations successives peut avoir un coût de l’ordre de 𝑛2.

Pour régler ce problème, on modifie légèrement la stratégie :
■ si len devient strictement inférieure à capacity / 4, on ré-alloue un bloc de taille capacity / 2 ;
■ sinon, on supprime l’élément sans ré-allouer.

On peut alors montrer que la complexité amortie des opérations pop et push est en 𝑂(1).

4 Opérations supplémentaires
Jusqu’ici on a défini les opérations élémentaires sur les tableaux redimensionnables. On va désormais écrire des fonc-
tions moins élémentaires, en se plaçant de l’autre côté de la barrière d’abstraction : il est strictement interdit de
manipuler les tableaux redimensionnables avec autres choses que les primitives définies jusqu’ici.

4.1 Insertion et suppression à une position arbitraire
■ Q15. Écrire une fonction permettant d’insérer un nouvel élément à un emplacement arbitraire 𝑖 du tableau. Les

éléments présents aux indices 𝑗 ⩾ 𝑖 seront décalés d’une case vers la droite.
Les valeurs acceptables pour 𝑖 vont de 0 à la longueur du tableau incluse (dans ce cas, l’insertion revient à
un push). Sa signature sera :



MP2I - 2025/2026 Informatique – TP n°12 – Tableaux redimensionnables 3/3

void insert_at(resizearray* t, int i, int x)

■ Q16. Déterminer la complexité de insert_at (en fonction de 𝑖 et du champ len de 𝑡).
■ Q17. Écrire une fonction permettant de supprimer un élément à un emplacement arbitraire 𝑖 et renvoyer sa valeur.

Les éléments situés à droite seront décalés vers la gauche. Les valeurs acceptables pour 𝑖 vont de 0 à 𝑛 − 1
(où 𝑛 est la longueur du tableau). Si 𝑖 = 𝑛 − 1, l’opération équivaut à un pop. La signature sera :

int extract_at(resizearray* t, int i)

■ Q18. Déterminer la complexité de cette fonction.

4.2 Une variante du tri insertion
On se propose d’écrire une variante du tri insertion sur les resizearray. Ce tri ne sera pas en place : on renverra un
nouveau tableau (trié) sans modifier celui passé en paramètre. L’idée est la suivante, en notant in le tableau à trier :

■ on crée un tableau vide out : tout au long de l’exécution de l’algorithme, ce tableau sera trié ;
■ pour chaque élément de in :

■ on détermine à quelle position de out il faut l’insérer pour que out reste trié ;
■ on effectue l’insertion (à la position déterminée)

■ on renvoie le tableau out.

■ Q19. Écrire une fonction int position(resizearray* t, int x) qui renvoie le plus grand entier 𝑖 tel que l’insertion
de x en position 𝑖 laisse le tableau t trié (en supposant qu’il était trié avant l’appel).

■ Q20. Écrire une fonction resizearray* insertion_sort(resizearray* tableau t) suivant l’algorithme décrit ci-
dessus.


	Tableaux redimensionnables
	Réalisation naïve en C
	Réalisation efficace en C
	Opérations supplémentaires
	Insertion et suppression à une position arbitraire
	Une variante du tri insertion


